Gamma-Ray Bursts and STROBE-X

Adam Goldstein **Universities Space Research Association** adam.m.goldstein@nasa.gov

Afterglow

VVI al are GRBs?

- **Transient Relativistic Explosions** lacksquare
- Gamma-ray to Radio (GWs? Cosmic rays? Neutrinos?)
- timescales: few ms to years lacksquare
- Extreme physics, fundamental physics

So What Do You Need for GRBs?

- - lacksquareless impulsive
- Onboard triggering, ability to repoint \bullet
- WFM modules ~co-pointed with XRCA \bullet
- Low deadtime
- TDRSS wake-up capability to transmit real-time alerts, data

Stable (or predictable) backgrounds, good triggering algorithms Hard-to-soft evolution in GRBs means that the WFM may not be triggering on the start of the GRB, and the GRB soft emission is often

Optimize WFM for ~all-sky coverage, anti-Earth/anti-Sun pointing

similar to Swift BAT & XRT, minimize amount of required repointing

X-ray Flashes—Off-Axis Jets?

Choked Jets

- lacksquare
 - low luminosity lacksquare

 - softer emission \bullet
- TeV neutrinos to precede burst

Senno+ 2016

Extended wind/outer envelope "chokes" jet

trans-relativistic to mildly relativistic

Long GRBs + energetics correlations can help constrain dark energy EoS

1 constraints

GRBs for Cosmology

8

X-ray Afterglow—Jet Breaks

- Long GRB jet breaks time distribution likely biased
- Difficult to observe prompt afterglow jet breaks without a Swift BAT/XRT type mission
- Less collimation -> longer jet break time, difficult to observe due to fading flux
- XRCA could catch both prompt xray afterglow/jet breaks and late jet breaks out to O(10) days

GRB Science with STROBE-X

Long GRBs—Collapsars \bullet

- Choked Jets (coincident neutrinos) \bullet
- Cocoon Emission
- X-ray Flashes \bullet

Short GRBs—Mergers

- Gravitational-wave counterparts
- Cocoon Emission
- Constraining H0 (with GW) lacksquare
- Jet collimation (with GW) \bullet

Population studies with BNS & NSBH progenitors (with GW)

Design Trade - STROBE-X

- Difficult to do prompt spectroscopy for canonical long and short GRBs
- Generally, energetics will be difficult to estimate
 - May not contribute to the energetics correlations
- May not contribute to high-z GRB cosmology
- Only contribute to luminosity function at the very low end
- Triggering efficiency lightcurves are less impulsive at lower energies
- Association of progenitors to GRBs—could be difficult if not observing over canonical energy band

These issues can be addressed if observational energy range is extended to 150 or 300 keV

Backup

Short GRBs—Mergers

Long GRBs — Core-Collapse SNe

X-Ray Flashes (XRFs) Jet Cocoons Choked bursts X-ray afterglow

