Continuum-Fitting of Spinning (Stellar-Mass) Black Holes with STROBE-X

Jack Steiner MIT Kavli Institute

Measuring the Inner Disk Radius

Radius of ISCO versus Spin

Continuum Fitting

(Zhang, Cui, & Chen 1997)

Measuring the Radius of a Star

- Measure the flux F received from the star
- \curvearrowright Measure the temperature T_{*} (from spectrum)

R

$$L_{*} = 4\pi D^{2}F = 4\pi R_{*}^{2}\sigma T_{*}^{4}$$
$$\Delta \Omega = \frac{\pi R_{*}^{2}}{D^{2}} = \frac{\pi F}{\sigma T_{*}^{4}}$$
$$R_{*} = D\sqrt{\frac{\Delta \Omega}{\pi}} = 37.5 \frac{L_{*}^{1/2}}{T_{*}^{2}}(\text{cgs})$$

Measuring R_{ISCO}

Radius R of a Star $L = 4\pi D^2 F = 4\pi R^2 \sigma T^4$ Solid angle: $(R/D)^2 = F/\sigma T^4$ $D \rightarrow \mathbf{R}$

Radius R_{ISCO} of Disk Hole F and $T \rightarrow \text{solid}$ angle $D \text{ and } i \rightarrow \mathsf{R}_{\text{ISCO}}$

 R_{ISCO} and $M \longrightarrow a_*$

Requirements for the X-ray Continuum Fitting Method

Zhang, Cui & Chen 1997

Spectrum dominated by accretion disk component

How Well Does it Work in Practice?

- R Extremely well
- Multiple independent observations of the same BH
 - \bigcirc at different luminosities (up to 30% L_{Eddington})
 - ca with different instruments

Using many spectra like this:

Get Spin (LMC X-3)

A STROBE-X Perspective

STROBE-X's view of the thermal state

Energy (keV)

Reaching Fundamental Timescales

- NICER gets a ~10% disk radius each second (the viscous timescale)
 - STROBE-X obtains a ~10% disk radius each 10⁻²s for a bright BH (orbital timescale at 10 Rg).
 - Real Enables phase-resolved spectroscopy of a HFQPO
 - Can map disk structure at the viscous timescale

Viscous timescale (peeking under the hood of CF)

Continuum Fitting in Practice

Continuum Fitting++ with STROBE-X

The RXTE Road Map

How to get there? (in outline)

Reprint tests of disk spectrum

Restablishing disk evolution beyond "thin" limit

Real Bright-hard state: Truncation? Variability confounding? Extending self-consistent modeling?

Testing Disk Structure

R NonLTE effects (atomic edges, electron scattering, etc.)

Testing Disk Structure

Can directly test for slim disk departure from thin-disk models with growing luminosity

Examining Accretion Instabilities

GRS 1915+105 Heartbeats (Neilsen+2011)

GRS 1915+105 variable modes

Belloni+2000

GRS 1915+105 in 3s with NICER (5000 cts)

The Current Black Hole Binary Zoo

A Local Group View?

Extragalactic Stellar BHs

NGC 1313, 4 Mpc

3' vs 1.5'

Competing with Athena in Athena's wheelhouse

- A LAD is not helpful here
- R Puts demands on XRCA FoVR (push to 1.5' radius?)

Red an X-ray imager to inform our program

Cause for Excitement

- Have access to the outskirts of all Local Group members
 - CR Low N_{H} , less crowded
 - Many low-mass LG members
 - Can sweep up radius estimates for a dozen proximate sources in 10 ks. (~100s-1ks apiece for ~5000 ct benchmark)
 - Distance known precisely
- Establish a critical-mass population of 50-100 stellar BH spins (and masses)
- Age of big glass on the ground: can get masses for stellar BHs in the Local Group ($R \sim 26+$) with AO.

Operational and Instrumentation Tradeoffs

- Extragalactic a priority? : Pushing the optics benefits from ground-based and space X–ray imaging partnerships
- Resolution: Not critical for continuum fitting.
- Effective Area: Area and brightness trade off against the crucial timescales we can probe; bigger is better, but cuts will not hamstring science.
- R Throughput: Up to million(s) of events per second, please!
- Energy range: Most important for the science grasp is to anchor the high-energy tail; best achieved by extending the reach on the LAD:
 Can we push to 50+ keV? This affects downscattering as well as upscattering. (Also important for AGN and ULX science.)

Continuum-Fitting Discussion Prompts

- "Hotspot" / waterfall-analog for Galactic systems mass and spin from joint spectral/timing continuum data.
- Oust-scattering halos probe dust structures near and far (different scales accessed with LAD and XRCA)
- Rextragalactic merits?
- R Truncation in continuum

STROBE-X and BH Spin

- Spins can be measured with three techniques: continuum-spectroscopy, reflection spectroscopy, and QPO timing
- STROBE-X offers groundbreaking capabilities for each method
- A simultaneous constraint with all three would (in principle) be possible